Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har.
The goal of your project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set.
# Download the training and test sets
if(!file.exists("pml-training.csv")){
trainingUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
testUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
download.file(trainingUrl, destfile = "pml-training.csv", method="curl")
download.file(testUrl, destfile = "pml-testing.csv", method="curl")
}
# import the data sets
training <- read.csv("pml-training.csv")
testing <- read.csv("pml-testing.csv")
dim(training)
## [1] 19622 160
# loading the required packages
library(lubridate)
library(caret)
training$cvtd_timestamp <- as.Date(training$cvtd_timestamp, format = "%m/%d/%Y %H:%M")
training$weekday <- weekdays(training$cvtd_timestamp)
training$weekdayf <- factor(training$weekday)
table(training$classe)
##
## A B C D E
## 5580 3797 3422 3216 3607
prop.table(table(training$classe))
##
## A B C D E
## 0.284374681480 0.193507287738 0.174396086026 0.163897665885 0.183824278871
prop.table(table(training$user_name))
##
## adelmo carlitos charles eurico jeremy
## 0.198348792172 0.158597492610 0.180205891346 0.156457038019 0.173376821935
## pedro
## 0.133013963918
ggplot(training, aes(weekday)) +
geom_bar() +
facet_wrap(~classe, ncol = 3)
## Remove columns with missing values
training <- training[, colSums(is.na(training)) == 0]
testing <- testing[, colSums(is.na(testing)) == 0]
## Remove columns that are not relevant to accelerometer measurements.
classe<- training$classe
trainRemove<- grepl("^X|timestamp|window", names(training))
training2 <- training[, !trainRemove]
trainCleaned<- training2[, sapply(training2, is.numeric)]
trainCleaned$classe<- classe
testRemove<- grepl("^X|timestamp|window", names(testing))
testing2 <- testing[, !testRemove]
testCleaned<- training2[, sapply(testing2, is.numeric)]
testCleaned <- testCleaned[, c(names(intersect(trainCleaned, testCleaned)))]
dim(trainCleaned)
## [1] 19622 53
We now have 52 predictors left from the original 91 predictors. This still seem to be a lot, but we already have a sizeable reduction from the original.
set.seed(626)
library(caret)
inTrain <- createDataPartition(trainCleaned$classe, p=0.70, list=F)
trainData <- trainCleaned[inTrain, ]
testData <- trainCleaned[-inTrain, ]
Here I consider decision trees, random forests, and generalized boosted regression, with 5 cross-validations. I shall choose the best model by comparing the in-sample predictive accuracy.
fitControl <- trainControl(## 10-fold CV
method = "cv",
number = 5)
dtmod <- train(classe~., data=trainData, method="rpart", trControl=fitControl)
dtmod
## CART
##
## 13737 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10990, 10990, 10988, 10989, 10991
## Resampling results across tuning parameters:
##
## cp Accuracy Kappa
## 0.0346861967246 0.503678832507 0.3519294041129
## 0.0599125216153 0.467439740527 0.2947893868087
## 0.1151459668396 0.331502973432 0.0718037567986
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0346861967246.
predictiondt <- predict(dtmod, testData)
cmdt <- confusionMatrix(predictiondt, testData$classe)
cmdt
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1533 503 480 420 152
## B 21 387 31 183 143
## C 116 249 515 361 298
## D 0 0 0 0 0
## E 4 0 0 0 489
##
## Overall Statistics
##
## Accuracy : 0.496856415
## 95% CI : (0.484001405, 0.509714542)
## No Information Rate : 0.284451997
## P-Value [Acc > NIR] : < 2.220446e-16
##
## Kappa : 0.341941307
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D
## Sensitivity 0.915770609 0.3397717296 0.5019493177 0.000000000
## Specificity 0.630729043 0.9203539823 0.7892570488 1.000000000
## Pos Pred Value 0.496437824 0.5058823529 0.3346328785 NaN
## Neg Pred Value 0.949588845 0.8531250000 0.8824206167 0.836193713
## Prevalence 0.284451997 0.1935429057 0.1743415463 0.163806287
## Detection Rate 0.260492778 0.0657604078 0.0875106202 0.000000000
## Detection Prevalence 0.524723874 0.1299915038 0.2615123195 0.000000000
## Balanced Accuracy 0.773249826 0.6300628559 0.6456031833 0.500000000
## Class: E
## Sensitivity 0.4519408503
## Specificity 0.9991671872
## Pos Pred Value 0.9918864097
## Neg Pred Value 0.8900222552
## Prevalence 0.1838572642
## Detection Rate 0.0830926083
## Detection Prevalence 0.0837723025
## Balanced Accuracy 0.7255540187
controlRf <- trainControl(method="cv", 5)
rfmod<- train(classe ~., data=trainData, method="rf", trControl=controlRf, importance=TRUE, ntree=100)
rfmod
## Random Forest
##
## 13737 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10989, 10991, 10990, 10989, 10989
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.990390521968 0.987842712220
## 27 0.990900221902 0.988487978714
## 52 0.981873648247 0.977068601720
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
predictionRf <- predict(rfmod, testData)
cmRf <- confusionMatrix(predictionRf, testData$classe)
cmRf
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1671 9 0 0 0
## B 3 1125 4 0 0
## C 0 5 1021 8 3
## D 0 0 1 955 2
## E 0 0 0 1 1077
##
## Overall Statistics
##
## Accuracy : 0.993882753
## 95% CI : (0.991541116, 0.995711985)
## No Information Rate : 0.284451997
## P-Value [Acc > NIR] : < 2.220446e-16
##
## Kappa : 0.992261581
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D
## Sensitivity 0.998207885 0.987708516 0.995126706 0.990663900
## Specificity 0.997862740 0.998525074 0.996707141 0.999390368
## Pos Pred Value 0.994642857 0.993816254 0.984570878 0.996868476
## Neg Pred Value 0.999286564 0.997054492 0.998968647 0.998173331
## Prevalence 0.284451997 0.193542906 0.174341546 0.163806287
## Detection Rate 0.283942226 0.191163976 0.173491929 0.162276975
## Detection Prevalence 0.285471538 0.192353441 0.176210705 0.162786746
## Balanced Accuracy 0.998035313 0.993116795 0.995916924 0.995027134
## Class: E
## Sensitivity 0.995378928
## Specificity 0.999791797
## Pos Pred Value 0.999072356
## Neg Pred Value 0.998959850
## Prevalence 0.183857264
## Detection Rate 0.183007647
## Detection Prevalence 0.183177570
## Balanced Accuracy 0.997585362
fitControl <- trainControl(## 10-fold CV
method = "cv",
number = 5)
gbmod <- train(classe~., data=trainData, method="gbm",
trControl = fitControl,
verbose = FALSE)
gbmod
## Stochastic Gradient Boosting
##
## 13737 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10989, 10990, 10989, 10991, 10989
## Resampling results across tuning parameters:
##
## interaction.depth n.trees Accuracy Kappa
## 1 50 0.756060879580 0.690382339452
## 1 100 0.818083340851 0.769667711318
## 1 150 0.852370422684 0.813167362923
## 2 50 0.855646565331 0.817078461258
## 2 100 0.905075400997 0.879869187478
## 2 150 0.931718335303 0.913591389295
## 3 50 0.895977027644 0.868302518587
## 3 100 0.942564599687 0.927321673771
## 3 150 0.959962566621 0.949345348560
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
## interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
predictiongb <- predict(gbmod, testData)
cmgb <- confusionMatrix(predictiongb, testData$classe)
cmgb
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1648 41 0 3 2
## B 15 1057 37 2 9
## C 5 40 978 28 7
## D 5 1 9 922 16
## E 1 0 2 9 1048
##
## Overall Statistics
##
## Accuracy : 0.96057774
## 95% CI : (0.955287447, 0.96540494)
## No Information Rate : 0.284451997
## P-Value [Acc > NIR] : < 2.220446e-16
##
## Kappa : 0.950117405
## Mcnemar's Test P-Value : 7.97537405e-06
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D
## Sensitivity 0.984468339 0.928007024 0.953216374 0.956431535
## Specificity 0.989076229 0.986725664 0.983535707 0.993700467
## Pos Pred Value 0.972845336 0.943750000 0.924385633 0.967471144
## Neg Pred Value 0.993796230 0.982791186 0.990055935 0.991484185
## Prevalence 0.284451997 0.193542906 0.174341546 0.163806287
## Detection Rate 0.280033985 0.179609176 0.166185217 0.156669499
## Detection Prevalence 0.287850467 0.190314359 0.179779099 0.161937128
## Balanced Accuracy 0.986772284 0.957366344 0.968376041 0.975066001
## Class: E
## Sensitivity 0.968576710
## Specificity 0.997501562
## Pos Pred Value 0.988679245
## Neg Pred Value 0.992953368
## Prevalence 0.183857264
## Detection Rate 0.178079864
## Detection Prevalence 0.180118946
## Balanced Accuracy 0.983039136
Random Forests gave the highest accuracy (99.39%) when compared to decision trees and generalized boosted regression. The expected out-of-sample error using random forests is 0.61%.
prediction <- predict(rfmod, testing)
prediction
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
write.table(prediction, "predictions.txt", row.names = FALSE, col.names = FALSE)